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Abstract

Numerical dating methods in Quaternary science are faced with the need
to adequately visualise data consisting of estimates that have differing stan-
dard errors. Recent approaches either focus on the display of age frequency
distributions that ignore the standard errors or on radial plots, that allow
comparisons between estimates allowing for their differing precisions, but
without giving an explicit picture of the age frequency distribution. Hence,
visualising both aspects requires at least two plots. Here, an alternative is
introduced: The abanico plot. It combines both aspects and therefore allows
comprehensive presentation of chronometric data with individual standard
errors. It extends the radial plot by a kernel density estimate plot, histogram
or dot plot and contains elements that link both plot types. As part of the
R package ’Luminescence’ (version > 0.4.5), the abanico plot is designed as
the final part of a comprehensive analysis chain of luminescence data but is
open to a wide range of other Quaternary dating communities, as illustrated
by several examples.

Keywords: Luminescence dating; Fission track; Cosmogenic nuclides;

∗corresponding author
Email address: mdietze@gfz-potsdam.de (Michael Dietze)

Preprint submitted to Quaternary Geochronology August 28, 2016



Radial plot; KDE; R

1. Introduction

Many geo-scientific dating communities, such as luminescence (optically
stimulated luminescence; OSL, thermoluminescence, TL), fission track (FT)
and cosmogenic nuclides (CN), including radiocarbon (14C) generate data
that consist of age estimates with individual standard errors 1. There are
several plot types for such chronometric data. Among them are rather simple
representations of age estimates, without focus on errors (e.g., histograms or
kernel density estimates). More insight into the data is possible when plotting
standard errors explicitly in some relation to ages (e.g., plots of ages with
error bars in ranked order or the radial plot). However, there is always a
trade-off between adequate visualisation and straightforward interpretation
of variability in ages and variability in errors. ? provide a thorough overview
and discussion of currently available plot types for chronometric data with
individual standard errors, focused on OSL data.

In this article, we argue for an enhancement of the radial plot (?). A
radial plot is a scatter plot, showing data precision (reciprocal standard error)
on the x-axis and a standardised estimate of age on the y-axis. Thereby,
data precision increases along the x-axis and data variation around a given
central value (e.g., the weighted mean) manifests as dispersion along the y-
axis. Hence, these two sources of variability are geometrically separated. The
radial plot further allows projecting each measured value on a z-axis depicting
a scale of ages, and thereby in principle gives a sense of the corresponding
ages and their distribution. Nevertheless, this view on age distributions is
not really intuitive. Each age needs to be mapped by mentally drawing a line
from the origin of the scatter plot (zero at the x- and y-axis), through the
data point, to the z-axis. This drawback might be reduced by adding rugs,
short lines perpendicular to the z-axis at the projected position of each data
point, to the z-axis (e.g., as in ?). But still, the radial plot is no intuitive
tool to put emphasis on age frequency distribution. It therefore seems useful
to combine the advantages of the radial plot with those of age frequency

1The term age is used throughout this article for simplicity and consistency although
for example in luminescence dating typically equivalent dose (De) are used rather than
ages.
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distribution plots, such as kernel density estimate plots, histograms or dot
plots. The abanico plot explicitly focuses on age frequency distributions.
Accordingly, it is not intended to replace the radial plot, which provides an
excellent approach to illustrating distribution of standardised estimates and
precision. A radial plot (also available as function plot_RadialPlot() in the
R package ’Luminescence’, ?) can be a sufficient or even more appropriate
solution, for example when individual standard errors vary significantly or
are high in general.

Typically, the above mentioned plots can be produced by specific soft-
ware, such as Radial Plotter (?), Analyst (e.g., ???), S-scripts, SigmaPlotTM

and so on. In any case, it requires to prepare, import and modify the age
data, create the plot and export/save it for potential further modification
steps. Usually, this involves dealing with several programs, although it might
be reasonable to work with just one software. ? introduced a collection of
functions for the statistical programming language R (?): the package ’Lu-
minescence’ (current version 0.4.5). The primary goals of the package are
to provide a free, open, transparent, modifiable and comprehensive tool for
luminescence data analysis. Specifically, the package supports nearly all pub-
lished age models and plot types to handle luminescence data. However, its
applicability is not restricted to luminescence data. Other dating communi-
ties share a considerable portion of data analysis and might also benefit from
the package.

The scope of this article is to introduce the abanico plot, a plot type
that merges a radial plot with a kernel density estimate plot (or other uni-
variate plot types if the user decides so). Thus, it combines the benefits of
both plot types to provide a comprehensive view on chronometric data. The
contribution shows options to modify the abanico plot for different display
purposes. Several examples highlight the overall applicability of the abanico
plot to different dating disciplines. A supplementary document provides a
tutorial-like, step-by-step introduction to data import and how to create and
customise the abanico plot.

2. The abanico plot

2.1. Philosophy and construction

The abanico plot is named after its fan-like appearance (el abanico [span.]
– the fan, [aβa’niko]). The initial concept of this plot emerged during the
revision of an S-script by Rex Galbraith to create radial plots and is based
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Figure 1: The abanico plot as created by the default R function call
(plot AbanicoPlot(...)) using the example data provided with the R package ’Lu-
minescence’ (ExampleData.DeValues$CA1, De results based on single grain (200–250 µm)
quartz measurements, performed on a Risoe TL/OSL DA-20 reader at the University of
Cologne). The plot consists of two parts, a bivariate plot (a radial plot) on the left side
and a univariate plot (by default a kernel density estimate) on the right side. De values are
shown on a log-scale. For further details on the plot construction see the supplementary
materials. Details on the dataset are given in the package manual.

on the combination of a radial plot and a kernel density estimate curve as
suggested by ?, Fig. 4, p. 204. Such aligned plots have been already adopted
by fission track dating groups (e.g., ?). However, a comprehensive view on
both, standard error and data distribution characteristics requires further
steps. Along with a list of the benefits of the radial plot, ? point at the
necessity to look at more than one plot type in order to get a comprehensive
view on the analysed data, i.e. to explore ages and associated standard errors
in different ways. This is exactly the motivation to introduce the abanico plot
to the scientific community. Although the abanico plot could have been built
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as a stand-alone programme (e.g., like the JavaTM-program Radial Plotter ;
?)2 the authors decided to integrate it in the R package ’Luminescence’ (?).
This strategy ensures continuous development and support as well as the
possibility to handle the complete workflow of data analysis, plotting and
further statistical evaluations in one software environment.

As stated above, the abanico plot consists of two parts (Fig. 1): a bivariate
part (showing standardised estimates in relation to the precisions) and a
univariate part (showing the age frequency distribution). The two parts are
linked by a z-axis giving an age scale that is common to both. In a radial
plot the z-axis is usually drawn as an arc of a circle, but here it is drawn
as a straight line so that it can also be used for the univariate part. In
general, a data set consists of n measured values zi, i = [1, ..., n], each with
an associated standard error σi (i.e., a measure of deviation, not scatter).
When no log transformation is used, zi denotes the estimated age for the íth
individual sample and σi is its standard error. When the log scale is used,
zi is the natural log of the age estimate and σi is the standard error of the
log of the age estimate. In the latter case σi is closely approximated by the
relative standard error of the age estimate (i.e., the standard error of the age
estimate divided by the age estimate). The precision (x-axis in the plot) is
defined as the reciprocal value of the individual standard error:

xi =
1

σi
(1)

Standardisation of the data (y-axis of the plot) means here subtracting a
convenient central value z0 from each value zi and subsequent division by
the individual standard error σi, i.e.,

yi =
zi − z0
σi

(2)

The default central value is the weighted mean with weights proportional
to 1/σ2

i (cf. Appendix, ?). This results in a transformed data set, centred
at z0 and where each yi has unit standard error. This makes comparisons
between the estimates easy, taking into account their differing precisions.
For example, a set of estimates that agree with a common value will scatter
with unit standard error about a line that corresponds to that value (about

2http://www.ucl.ac.uk/~ucfbpve/radialplotter/

5



Figure 2: Abanico plot examples with synthetic data (two values, both with a relative
standard error of 5 %) to illustrate the influence of z-axis scaling on data representation.
A: with logarithmic scaling (default option), precision is calculated from relative standard
errors and both values plot at the same location along the x-axis. B: with linear scaling
precision is calculated from the absolute standard errors and results in different locations
along the x-axis. In both plots the rug option of the function is used, the dispersion bar
is omitted and plots are centred at 150 Gy.

95 % of them will be in a ±2 range centred on that value). The default plot
includes a ±2 range (called a ’dispersion bar’) around the central value (the
dark grey area in Fig. 1).

The data set can be plotted in linear or logarithmic form. This decision
has consequences on the plot result. Fig. 2 illustrates the effects for two
arbitrary data points with identical relative standard errors. If the abanico
plot is drawn with a logarithmic z-scale zi represents the logarithms of the
measured values, i.e. zi becomes log(zi), and σi is approximated by the
relative standard error, i.e. σi(log(zi)) ≈ σi/zi (cf. ?). Hence, the data are
plotted without any difference along the x-axis. However, in linear form,
precision is calculated as reciprocal of the absolute standard errors, which
places the value with 10 Gy standard error towards lower precision.

The univariate part of the abanico plot can be one or more out of the
following: (1) a kernel density estimate plot, (2) a histogram and (3) a dot
plot. A kernel density estimate (KDE) is a curve that depicts the empirical
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estimate of the density function of the distribution that the measured ages
were drawn from (?). The size of the kernel (i.e. the bandwidth) has impor-
tant effects on the appearance (smoothness) of the resulting curve. There are
several suggestions for optimal kernel sizes, most of them are implemented in
R. However, in practice, relatively large kernel sizes are favoured and, hence,
over-smoothed curves are produced (cf. ?). By default, the abanico plot uses
the method of ? to derive a suitable bandwidth (cf. ? for a methodological
comparison). KDE plots are the default option for the univariate part of
the abanico plot, mainly because they provide a reasonable picture of the
underlying distribution of zi for a sufficiently large number of samples. Fur-
thermore, KDE curves are efficient in visualising more than one data set at
a time, i.e. it is possible to plot several curves over each other. For a literal
explanation of the ideas, benefits and shortcomings of KDE plots see ?.

? stresses some limitations of KDE plots. The abanico plot compensates
those by linking univariate information to information from the bivariate
part. In general, we consider a KDE as a more appropriate solution to illus-
trate age distributions than a histogram, given the bandwidth is sufficiently
small and the number of measured values is sufficiently large. A KDE plot
avoids graphically cutting the data set into bins of predefined class limit
position. As it is combined with the bivariate plot part, it appears also un-
necessary to explicitly display the sample size (cf. ?), although this could be
indicated by adding rugs to the z-axis.

Nevertheless, there are cases when KDE plots are not useful. For example
if the data distribution is not continuous (although this can be handled with
a small enough bandwidth) or if only very few measured values are available.
In the former case a histogram might be more appropriate, in the latter case
a dot plot may be chosen. A histogram displays the frequency distribution
of measured values, grouped in intervals (i.e., bins). As with kernels in KDE
plots, the bin width and locations of break points is crucial for histograms to
adequately visualise the data distribution properties as unbiased as possible.
In the abanico plot bin size and break point location can be set manually
to override the default values. For an elaborated discussion of histograms
with respect to chronometric data see ?. Dot plots are very simple displays
of data frequency distributions, similar to histograms. They show stacked
dots, proportional to the number of values in bins and allow a fast and direct
visualisation of individual values.

The two parts of the abanico plot are linked by their common z-axis, rep-
resenting the age scale. This is made visually explicit by a set of ’isochrons’,
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i.e. lines of synchronous ages, that are horizontal in the univariate part and
slope to the origin in the bivariate part (grey lines in Fig. 1). One or more
bolder isochrons can be added to depict user-defined values (cf. Sec. 2.2). As
a further visual aid, there is an option to shade in a ’scatter polygon’ (e.g.,
the light grey polygon in Fig. 1) highlighting the area between the lower and
upper quartiles in the univariate plot and the corresponding isochrons on
the radial plot (by default). This shows where the middle half of the zi s
lies in both plots. As in Fig. 1, the scatter polygon may overlap with the
dispersion bar. It is the dispersion bar, not the scatter polygon, that indi-
cates agreement or otherwise of estimates with a specified value. In contrast,
the scatter polygon characterises the age frequency distribution. Hence, by
definition the two elements have different meanings and usually do not cover
the same range.

In summary, the abanico plot amalgamates many of the advantages of a
radial plot with those of a KDE. It allows assessing variation of data precision
(along the x-axis), scatter around a user-defined central value, agreement of
different values with each other, agreement between subsets of observations
(all along the y-axis) and characteristics of the age distribution (along the
z-axis).

2.2. Fine-tuning the plot

The abanico plot can be created by typing the function name in R,
followed by brackets, containing the variable name of data to be plotted:
plot_AbanicoPlot(data = age.data). A typical R-script might look like
the following:

1 ## load the package
2 l ibrary ( Luminescence )
3

4 ## s e t working d i r e c t o r y
5 setwd ( ”path/to/data/d i r e c t o r y ” )
6

7 ## read chronometric data
8 data <− read . table ( ” data . txt ” )
9

10 ## c r e a t e the p l o t
11 plot AbanicoPlot (data = data )

Or even more compact:

1 ## c r e a t e the p l o t
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2 Luminescence : : plot AbanicoPlot (data = read . table ( ”path/to/data/
data . txt ” ) )

This produces a plot as shown in Fig. 1. However, the function has a sig-
nificant number of additional parameters (added and separated by commas),
which allow a flexible use of the plot for a range of purposes. The plot may be
adjusted by applying general arguments of the R-language. It is possible to
modify plot title (main), subtitle (mtext), axes labels (xlab, ylab, zlab),
colours for data points (col), dispersion displays (polygon.col, bar.col)
and grid lines (grid.col), to add legends (legend, legend.pos), and to
adjust display ranges (xlim, ylim, zlim).

Apart from these rather general adjustments, more plot-specific and so-
phisticated modifications are possible. The univariate part can show one
or more out of the following plot types: KDE (kde = TRUE, the default
option), histogram (hist = TRUE) and dot plot (dots = TRUE). However,
only a KDE is useful if more than one data set is shown. Manual ad-
justment of the KDE bandwidth is possible with the parameter bw, which
can be set to a numeric value or to a keyword indicating the method used
for computation (e.g., bw = "nrd0"). Breakpoints (or bin limits) for the
histogram and dot plot can be specified, as well; either as the number of
breakpoints to be computed or as vector of actual breakpoint values (e.g.,
breaks = 20). The parameter plot.ratio controls the relative width ra-
tio of the bivariate and univariate part. It is set to 0.75 by default. The
frame of the abanico plot can be controlled by four options: frame = 0 (no
frame is drawn), frame = 1 (a frame is drawn that originates at zero pre-
cision and zero standardised estimate and extends along the range of the
z-axis, the default option), frame = 2 (the frame includes the dispersion
bar) and frame = 3 (the frame appears as a rectangle and includes the en-
tire plot area). As shown in ?, it is also possible to draw the entire plot
vertically (rotate = TRUE, cf. Fig. 5), which puts more emphasis on the
univariate plot part. The z-axis can be plotted in linear (log.z = FALSE)
or logarithmic (log.z = TRUE, default) scale. Rugs can be added for better
perception of the distribution of individual values (rug = TRUE, cf. Fig. 5).
Plotting of the y-axis may be omitted (y.axis = FALSE) in cases where
the scatter of the standardised estimates is too small for appropriate vi-
sualisation. Error bars may be added (error.bars = TRUE, cf. Fig. 3)
for small data sets or when it is necessary to show individual errors in
relation to each other. Since the R package ’Luminescence’ version 0.4.0
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a function is provided to calculate a wide range of descriptive statistics,
both in unweighted and weighted mode. The output of this function can
be passed to the abanico plot. Thus, it is possible to show any of the fol-
lowing statistic measures, either as a subtitle (summary.pos = ’sub’) or
legend-like item (e.g., summary.pos = ’topleft’): ’n’ (number of sam-
ples), ’mean’ (mean), ’mean.weighted’ (weighted mean), ’median’ (me-
dian), ’sdrel’ (relative standard deviation), ’sdabs’ (absolute standard
deviation), ’serel’ (relative standard error), ’seabs’ (absolute standard
error) and ’in.2s’ (percent of data in 2 σ). As noted by ?, there can
be good reasons to use another value than the default weighted mean to
center the z-axis. The function can calculate different values for standardis-
ing the data (z.0 = ...), i.e. the weighted mean (’mean.weighted’), the
unweighted mean (’mean’) or the median (’median’). It is also possible
to center the z-axis at a user-defined value (e.g., z.0 = 100). To display
more than one age population in a data set, it is possible to add further
dispersion bars (e.g., bar = c(100, 130), cf. Fig. 6). It is possible to omit
plotting both, the dispersion bar (bar.col = FALSE) and the scatter poly-
gon (polygon.col = FALSE). Also, the default range for the scatter polygon
(dispersion) can be changed, e.g., to account for non-normal distributions.
It is possible to select ’sd’ (one standard deviation), ’2sd’ (two standard de-
viations), ’qr’ (the quartile range, the default) and ’pnn’ (an arbitrary sym-
metric percentile range, whereby ’nn’ must be an integer number depicting
the lower percentile, e.g., 5–95 %: dispersion = ’p5’). The abanico plot
supports multiple data sets (or subsets of one data set, cf. Fig. 5). The differ-
ent subsets must be passed to the function as a list of data frames (a native
data structure of the R package), e.g., data <- list(data.1, data.2).

2.3. Integration in the R package ’Luminescence’

The R package ’Luminescence’ (?) is the essence of joint work of the au-
thors since 2012 and is supported by a website (http://www.r-luminescence.
de) with several tutorials (to which new users are kindly referred) as well as
a discussion forum for the growing user community (evidenced by at least
9000 package downloads to date) and published documentation and guidance
articles (???). Designed as a toolbox, the R package ’Luminescence’ intends
to support routine work, e.g., Risø BIN-file data import and processing, as
well as exploratory luminescence data analysis, e.g., spectra visualisation and
investigation.
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R (?) itself is a command line-oriented statistical programming language.
Thus, it enables full access to each and every command and especially plot
parameter, even after years - a characteristic that (almost) all mouse-input
interfaces are lacking. This is where we see the main strength of R, along with
minimum effort in reproducing and modifying calculations and outputs. It is
recommended to use the package along with the programming environment
RStudio (http://www.rstudio.org/) for a convenient workflow. Neverthe-
less, it is beyond the scope of this article to give a systematic introduction
to R; for this see, e.g., ????. The supplementary material provides more
detailed explanations and elaborated examples. It also contains the code
that was used to create all figures of this article, although some were edited
afterwards, for example to add information (Fig. 1).

3. Applications

Like the radial plot (??), the abanico plot is devoted to a broad scien-
tific community to display data adequately and straightforward, but also to
maintain the possibility to adjust the plot layout for specific purposes. In the
following paragraphs we show selected examples of possible applications in
chronometric disciplines without any intention to re-interpret the published
data but rather to highlight which aspects might be revealed by data visu-
alisation using the abanico plot. Furthermore, the data sets used to create
the plots might not always be ideally suited, e.g. in terms of sample size,
nature of errors, amount of auxiliary data. However, we tried to find a rea-
sonable balance between these drawbacks and the goal to show the flexibility
of the plot, possible fields of application, appropriateness and shortcomings
of default plot settings and the need to adjust specific parameters.

The first example (Fig. 3) is a radiocarbon data set from a study of the
southeastern sector of the Scandinavian ice sheet by ?. Since the data repos-
itory of the cited publication does not provide any information on base of
the reported individual errors we treated them conservatively as one stan-
dard error. The abanico plot allows a straightforward overview of outliers,
apparent age components and agreement of dates with respect to a central
value (in this case the weighted mean) as well as containment of values in
2 σ (standardised estimates in dispersion bar) or containment in the quar-
tile range (ages in scatter polygon). The lower outlier appears extreme in
the univariate plot part but when taking its precision into account in the
bivariate part, this impression becomes rather relative - mainly due to its
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Figure 3: Abanico plot of 12 radiocarbon dates, discussed by ?. Data are plotted with
linear z-scale, centered at the weighted mean, and with error bars. The black line depicts
four identical ages, equal to 28.55 cal. ka BP, also visible as a mode in the KDE plot. Their
standard errors are 230, 360, 380 and 380, which means that the two dates with the same
standard error plot at the same point so that only three points are visible. The lower
outlier is clearly visible. The statistical summary shows results of all different methods to
calculate measures of centrality available for the abanico plot function.

comparably low precision. The presented data might either result from two
distinct age populations or represent just one common age. In the latter
case, their reported standard errors would be underestimated, which would
have consequences for interpreting the youngest age as an outlier or not. The
article by ? also presents a large data set of 10Be exposure ages of moraines
for which the abanico plot would be well-suited.

The second example (Fig. 4) shows cosmogenic 10Be ages of a late-glacial
moraine (Fenix I) in Argentina investigated by ?. The abanico plot clearly
reveals the influence of boulder height (circle diameter) and lithology (circle
colour) on both, the deviation from the weighted mean age and the preci-
sion. Apparently, higher boulders yield lower precisions and the conglomerate
sample shows a very high precision. Except for the lower outlier, all measure-
ments fall into the dispersion bar and point at a consistent common value.
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Figure 4: Abanico plot visualising cosmogenic nuclide data. 10 10Be surface exposure
ages from boulders on a moraine in Argentina (Fenix I moraine, ?). Circle diameters are
proportional to boulder height and circle colours depict lithology. The scatter polygon is
defined as the 17–83 percentile range, the central value is defined by the weighted mean.
Note the high precision (and low deviation from the central value) of the one conglomerate
sample and how highly protruding boulders yield rather high deviations from the global
central value and low precisions. For illustrative reasons, both, a histogram and KDE
curve are plotted, although both graphics are of limited use for such high and diverse
errors.

The KDE curve mainly shows similar distribution trends like the histogram.
However, in this case the KDE curve provides a more explicit visualisation of
the outlier that does not correspond to the population comprising all other
values. Also, the apparent modes of the suspected distributions are different
for histogram versus KDE curve. Ideally, the histogram would have to be
drawn with a larger than the default number of classes. Likewise, 10 sam-
ples are not sufficient to create meaningful KDE curves. Hence, the curve
may just allow a rough perception of the distribution of ages rather than
interpreting a meaningful pattern. The example demonstrates the different
meanings of dispersion bar and scatter polygon. The dispersion bar cuts the
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Figure 5: Abanico plot showing results of an inter-laboratory comparison of 21Ne measure-
ments (?), colour-coded by the respective laboratories. Samples with different treatment
(GFZ 6 to GFZ 8) were excluded. The abanico plot is drawn in vertical form. KDE curves
are drawn for each laboratory separately, weighted means are used as central values. Scat-
ter polygons are omitted due to overlapping ranges. Note the high precision and small
scatter of the ETH results, the systematic overestimation of the BGC data.

isochrons, whereas the scatter polygon follows the isochrons. The two plot
elements do not share the same range, as they obviously illustrate different
data distribution properties.

Fig. 5 visualises the results of an inter-laboratory comparison of 21Ne
concentration measurements of one sample published by ?. The two CRPG
samples are excluded and samples 6 to 8 from GFZ were also omitted because
these were pretreated differently, which resulted in deviating measurement
results. KDE curves are drawn for each laboratory data set separately. In
an inter-laboratory comparison, the focus is not only on the similarities of
measured values but also on individual precisions within and between labo-
ratories. Both aims are readily visible in the abanico plot. The KDE curves
give a straightforward impression of differences in variance and central ten-
dency as well as locations of outliers, although it might be misleading to plot
apparently erratic values as a density estimate curve. It is relevant to note
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Figure 6: Abanico plot of a set of 50 zircon fission track measurements (sample SH4)
published by ?. The plot shows uranium content (in ppm) equal to circle diameter. The
data are centered by the weighted mean. The three mean finite mixture components are
illustrated by coloured lines.

that the individual standard errors are of interest in their own right. Ad-
ditionally, they convey important information for comparing different mea-
surements, within and among laboratories. Measurements from ETH and
GFZ plot mainly inside the dispersion bar while others (especially the BGC
data) fall obviously outside it, indicating no common value. As pointed out
by ? scatter among the laboratories is higher than could be explained by the
laboratory-internal scatter. The abanico plot provides a clear view on ex-
actly this. The ETH values cluster with comparably high precision and with
generally low scatter around the central value (weighted mean in this default
case). The BGC values show a systematic positive offset from the other mea-
surements. This is visible in the bivariate plot part as a shift parallel to the
central value line towards 3 σ and in the univariate plot part where this shift
manifests as a discrete mode between 365 ·106 at/g and 385 ·106 at/g. The
plot also shows the relationship between standardised estimate scatter and
KDE curve shape (but not precision). In this version of the plot, the scatter
polygons were not drawn because of significant overlapping.
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The last example refers to fission track data. Fig. 6 illustrates the ability
of the abanico plot to include additional information of multivariate data.
It plots the results of one zircon fission track sample (50 individual crystals,
sample SH4), published by ?, along with the published finite mixture model
ages as denoted by the three labelled lines in the plot. Each individual mea-
sured value is displayed with a size corresponding to its uranium content.
This reveals several trends in the data set; for example, precision increases
with increasing uranium content, reflecting precision of detection. Addition-
ally, younger samples show higher uranium contents. The three dispersion
bars were centered at the means of the modelled component ages and allow
connecting measured values with modelled component results. Although a
sample size of 50 is sufficient to generate a KDE plot the resulting curve does
not provide a good picture of the three components.

For further, non-chronometric applications of radial plots, and therewith
the abanico plot, the reader is referred to ?.

4. Conclusion

The abanico plot overcomes most of the limitations assigned to existing
plot types for showing chronometric data with individual standard errors.
Thereby, it does not represent a fundamentally new invention, but rather
the combination of established plot types, each with its own strengths and
limitations. The abanico plot can be used to separate two sources of uncer-
tainty: individual data precision and deviation from a common value. At
the same time it allows for inspection of the data in their original age dis-
tribution. It is suitable for displaying multivariate data and can be used to
show both, characteristics of individual values and the contribution of each
value to a joined data distribution. Based on selected examples its flexibility
and applicability has been demonstrated for different scientific fields focusing
on Quaternary dating techniques. Due to its integration in the R package
’Luminescence’, the abanico plot can be utilised to visualise the results of age
models, used in different scientific fields. Hence, we consider the abanico plot
to be a valuable plot type designed for chronometric data, but potentially
applicable for a wider range of scientific fields. We kindly ask scientists to
share with us their experiences, emerging problems and limitations as well
as discussions on how to improve plot functionalities in the future via the
package forum (http://forum.r-luminescence.de).
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6. Appendix

zi measured values for i = {1, ..., n}; n ∈ N.

σi standard error associated with zi.

xi precision defined as xi = 1
σi

yi individual standardised estimate defined as yi = zi−z0
σi

z0 central value of zi values, e.g., the weighted mean: µ̂ =
∑
ziwi∑
wi

with weights

defined as wi = 1
σ2
i
, σi 6= 0.

xzi x coordinate of a data point on the z-axis of the plot, xzi = r0 with
r0 = 1.03 times the maximum value of x.

yzi y coordinate of a data point on the z-axis of the plot, yzi = (zi − z0)xzi
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