
Tutorial to the R-package RCHILD (version 0.2.3) 
This tutorial is of preliminary stage and mainly used for presenting and testing the capability of the 
(also still preliminary R-package RCHILD). RCHILD is a collection of functions that help to use the 
landscape evolution model CHILD (Channel-Hillslope Integrated Landscape Development) more 
conveniently. Original model output consists of a series of ASCII-files. To create maps, scenes and 
further thematic plots from this data, the use of functions is necessary. This document presents 
functions of the package and illustrates their argument usage. 

To use the package, it needs to be installed and loaded. Installing from local source (yet, the package 
is not hosted on any server) can be done by install.packages 
("path_to/RCHILD_0.1.tar.gz", repos = NULL). The package relies on some other 
packages (akima, fields, geometry, raster, rgdal, rgl,animation) and additional programs 
and platform-dependent libraries. The package raster requires the GDAL-library 
(http://www.gdal.org/) to be installed. GDAL normally is already installed on Windows machines. For 
installation under Linux try in the terminal sudo apt-get install proj and sudo apt-get 
install gdal-bin. The package animation relies on other software to create animated gif-
images (http://www.imagemagick.org/script/index.php) and avi-movies 
(http://ffmpeg.org/download.html). 

Once installed, the package can be loaded by library(RCHILD). When this is done successfully, all 
functions of the package are available. 

2. The example data sets 
2.3. DEM500 

2.3.1. Overview 

The example data set DEM500 is a digital elevation model of the eastern part of the Erzgebirge and 
surrounding areas in Saxony, eastern Central Europe. It covers several geomorphologic and tectonic 
units. It is a raster data set, created from an ASTER GDEM data set, has a spatial resolution of 500 
m and builds a grid with 139 columns and 143 rows. It has a geographic projection and is referenced 
in the UTM system, zone 33N. The data set can be loaded to R and its summary may be checked: 

data(DEM500)  # load example data set
DEM500  # show summary of the DEM
## class       : RasterLayer  
## dimensions  : 143, 139, 19877  (nrow, ncol, ncell) 
## resolution  : 500, 500  (x, y) 
## extent      : 361217, 430717, 5605429, 5676929  (xmin, xmax, ymin, ymax) 
## coord. ref. : NA  
## values      : in memory 
## layer name  : erzgebirge_250m  
## min value   : 92.92  
## max value   : 915.3 

2.3.2. Plot 

To plot the DEM there is a function plot() in the package raster, already loaded with the 
package RCHILD. So there would be nothing more to do than entering plot(DEM500). However, to 
show a little bit more features of the package raster let us compute a hillshade to add some 
perspective visualisation. Hillshade data sets rely on information about slope and aspect. Both data 
sets can be computed and serve as input for the hillshade creation. However, the data set needs a 
spatial projection specified (see below for more information). 

projection(DEM500)
## [1] "NA" 
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# set the projection to UTM zone 33N
projection(DEM500) <- "+proj=utm +zone=33 +north +ellps=WGS84 +datum=WGS84 
+units=m +no_defs"
 
# calculate slope, aspect and, finally, the hillshade data set
slope     <- terrain(DEM500, opt = "slope")  # create slope data set
aspect    <- terrain(DEM500, opt = "aspect")  # create aspect data set
hillshade <- hillShade(slope, aspect, angle = 45, direction = 0)  # create 
hillshade data set

Now all prerequisites are there to create an illustrative plot of the surface. This is done by first plotting 
the hillshade and then adding the DEM with some transparency. The hillshade must be in grey scale 
so the colour ramp is defined as a sequence of 250 values from 0 to 1. There should be no legend of 
the hillshade plotted. The DEM should be plotted in terrain colours, in this case classified to 5 classes. 
The degree of transparency is controlled with the argument alpha. To add the DEM plot to the allready 
existing hillshade, the argument add is set TRUE: 

plot(hillshade, col = grey(seq(0, 1, length.out = 250)), legend = FALSE)
plot(DEM500, col = terrain.colors(5), alpha = 0.5, add = TRUE)

 
3. A typical model run and evaluation 
3.1. DEM preprocessing 

3.1.1. Import a DEM raster-file 

The packges rgdal and raster provide powerful import functions for different raster file types. In the 
packgage RCHILD these functions are used in the function read.raster(). It allows to read ESRI-
files (asc), ERDAS Imagine-files (img) and GeoTiff-files (tif). Assume there is an ESRI-ASCII file 
(LS_SRTM.asc) in the current working directory, showing the north-eastern part of the Laguna 
Salada, Baja California, Mexico. This file may be imorted, querried and plotted by the following code: 

library(raster)
LS.raw <- read.raster("LS_SRTM.asc")  # read the raster file
LS.raw  # show a brief summary of the imported data set
## class       : RasterLayer  
## dimensions  : 188, 351, 65988  (nrow, ncol, ncell) 
## resolution  : 0.002, 0.002  (x, y) 
## extent      : -116, -115.3, 32.51, 32.89  (xmin, xmax, ymin, ymax) 
## coord. ref. : NA  
## values      : E:\Documents\Arbeit\Projects\LEM\R-LEM\LS_SRTM.asc  
## layer name  : LS_SRTM  
## min value   : -2.147e+09  
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## max value   : 2.147e+09 
plot(LS.raw, col = topo.colors(250))  # plot the raster-object

 

3.1.2. Project the raster object 

Depending on the source of the geospatial data the geographic projection and coordinate system may 
not be sufficiently appropriate for further handling. CHILD uses metric units. So it would be useful to 
have a raster data set in metric units as well. A typical projection and coordinate system is UTM 
(univeral transverse Mercator projection) and WGS84 (World Geodetic System 1984). If the data set 
does not already have a projection specified, it must be provided in R after importing the raster object. 
To check if a projection is defined the function projection()queries the raster object: 

projection(LS.raw)
## [1] "NA" 

It returns NA, which means there is no projection present. Since we know that the data set is in a 
geographical coordinate system with decimal degrees as units (see axes units of the above plot) and 
the WGS84-system, this information can be set via the projection()-function. 

projection(LS.raw) <- "+proj=longlat +ellps=WGS84 +towgs84=0,0,0,0,0,0,0 
+no_defs "

This projection string looks a little bit weired. It contains all the information necessary for the PROJ4-
library to handle projection, datum and ellipsoid. For more information google might be a good choice. 

Since it is desireable to re-project the data set into a metric system, and UTM is a commonly used 
one, there is a function projectRaster() that does this job: 

# specify the new projection, i.e. UTM zone 12 North with WGS84
newproj <- "+proj=utm +zone=12 +north +ellps=WGS84 +datum=WGS84 +units=m 
+no_defs"
 
# re-project the raster object
LS.raw.proj <- projectRaster(from = LS.raw, crs = newproj)
 
# plot the re-projected raster object
plot(LS.raw.proj)
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Note how i) the position of the data set in the plot changed due to the now projected character and ii) 
how the labels of the plot are now in metric units. 

3.1.3. Rotate a raster object 

CHILD allows using different types of tectonic forcing. Most of these require specifying a x- or y-
coordinate which represents the location of a fault line. This in turn means that the DEM must be 
rotated in order to have the fault lines in either horizontal or vertical direction. Rotation of a raster 
object in R is a non-trivial job. So either the rotation must be performed by another software (e.g. 
QGIS, ArcGIS) prior to importing a data set into R or the following way must be chosen. In summary, 
the raster must be transformed to a Spatial-Points-data set, which can be rotated. Then the point cloud 
must be re-converted into a raster object again. To do all these tasks, a further package (maptools) 
is necessary and a function of the package RCHILD must be introduced. 

# 1. convert the raster object into a SpatialPointsDataFrame-object
LS.spdf <- SpatialPointsDataFrame(SpatialPoints(LS.raw.proj),  
                                 proj4string = projection(LS.raw.proj),  
                                 data = as.data.frame(values(LS.raw.proj)))  
# 2. rotate the SpatialPointsDataFrame-object using the library maptools by 
an angle of 340 degrees
library(maptools)
## Loading required package: foreign 
## Loading required package: grid 
## Loading required package: lattice 
## Checking rgeos availability: FALSE Note: when rgeos is not available, 
## polygon geometry computations in maptools depend on gpclib, which has a 
## restricted licence. It is disabled by default; to enable gpclib, type 
## gpclibPermit() 
angle <- 355
LS.spdf.rot <- elide(LS.spdf, rotate = angle)
 
# 3. Extract the x-y-z-values of the rotated object
LS.TIN.rot <- cbind(LS.spdf.rot@coords, 
as.numeric(LS.spdf.rot@data$values))
LS.TIN.rot <- LS.TIN.rot[!is.na(LS.TIN.rot[,3]),]
 
# 4. Interpolate the x-y-z-values 
LS.rot <- TIN.raster(LS.TIN.rot, resolution = mean(res(LS.raw.proj)))
 
# 5. Plot the raster data set
plot(LS.rot)

4 



 

3.1.4. Create a spatial subset (crop) 

To work only with a spatial subset of the raster object, the data set can be cropped. The respective 
function crop() requires to specify a boundary box for the region to be returned. The extent of the 
boundary box, in turn, is created by the function extent(), which requires the following four values in 
exactly this order: xmin, xmax, ymin, ymax. 

boundarybox <- extent(31800, 51200, 3611000, 3626000)
LS.crop <- crop(LS.rot, boundarybox)
plot(LS.crop)

 

3.1.5. Change the raster resolution 

Changing the resolution may be done by (at least) two approaches: aggregating and resampling. 
Aggregating means that one new raster pixel will be computed from the aggregation of n original pixels 
(e.g. aggregation by 3 means that one new pixel will result from 3 by 3 original pixels). If this is 
desired, the function aggregate() will do the task. If a more flexible way is needed (e.g. not n 
multiples of the original pixel size but rather a new, arbitrary value) then the function resample() is 
needed. Since resample() requires a lot of further parameters to be set, it might be worthy to 
use aggregate() instead, if this function is sufficient. 

LS.agg <- aggregate(LS.crop, fact = 4)
plot(LS.agg)
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3.1.6. Create and write the CHILD PTS-file 

CHILD can either create an elevation mesh from user-set parameters or use a PTS-file as input. A 
PTS-file defines the nodes of the mesh by providing x-y-z-coordinates and the boundary flags for each 
mesh node. PTS-files may of course be created purely by hand, i.e. by typing the coordinates and 
boundary flags, or by using an existing DEM to retrieve the elevation data from. The 
package RCHILD provides a function create.PTS() to do this job and to set the boundary flags as 
well. 

There are several important parameters to discuss. Of course the function needs a DEM data 
set (raster-object), in the best case without NA-values since mesh nodes that are assigned NA-
values from the DEM will be deleted from the output file. This is especially relevant for marginal nodes 
because if they become deleted, the boundary flags of the formerly interior nodes are not updated and 
CHILD might report a crash. So, it is important to avoid NA-values throughout the extent of the CHILD 
mesh. 

The extent of the CHILD mesh determines how large the area will be that are modelled. The extent 
must be provided as a vector of length four, containing the bounding box in the order west, east, 
south, north. If there is no extent specified, the function will use the bounding box of the DEM to infer 
the mesh extent. As already noted, there should be no NA-values present in the DEM, especially not 
in the boundary regions of the mesh. However, since a raster data set is a matrix, DEM files that are 
rotated - even if only slightly, e.g. due to their geographic projection - usually contain NA-values at 
their margins. 

The spacing of the mesh is comparable to the resoulution of the DEM. However, since there are a 
couple of different mesh node arrangement types spacing is not directly equivalent to raster resolution. 
The mesh spacing should be in the range of the raster resolution but a little bit coarser. As mentioned 
in chapter 3.1.5, it is therefore useful to aggregate or resample the raster object prior to creating the 
PTS-file from it. Keep in mind that the node spacing is one of the key parameters controlling the time 
needed for a model run, so it is important to find the right way between statisical underestiamtion of 
the value space and loss in model performance. 

There are several types of node arrangement, from completely random over partly random and 
raster to hexagonal. Furthermore, there is the possibility to create the PTS-file from user-defined x-y-
coordinates. Depending on the research question these different types may yield different results. By 
default, the type is set to hexagonal. 

Finally, there are some options of how to set the boundary flags of the PTS-file. The boundary type 
determines how CHILD will deal with sediment and discharge at respective boundary nodes. If a 
boundary is interior, there is always (and has to be by definition) a downstream neighbour to pass 
discharge and sediment on to. At boundary nodes, sediment and discharge may either meet a barrier 
(closed node) or an outlet of the model region (open boundary), along with respective consequences 
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for the model result. Usually, when modelling catchment-wide areas of interest the easiest way is to 
choose a mesh larger than the catchment and to set all boundary flags to open, so the model will 
operate within the catchment by itself with no interest put on the catchment-external boundary 
conditions. So the default boundary flag option is “open”. However, there may be situations that 
require closing the entire mesh (argument value “closed”) or to let the function find the marginal node 
with the lowest elevation and set its flag to open (argument value “lowest”). 

Enough for the background. To create a PTS-file for the landscape described by DEM500, with a node 
spacing of 3000 m and hexagonal mesh geometry, a little bit smaller than the original DEM and with 
open boundaries the following code will serve. Furthermore, a little bit more code is provided, 
illustrating how to visualise the results: 

# set the mesh extent vector according to the DEM extent with a margin of
# 1000 m
mesh_extent <- c(DEM500@extent@xmin + 1000, DEM500@extent@xmax - 1000, 
DEM500@extent@ymin +  
    1000, DEM500@extent@ymax - 1000)
 
# create the PTS-object and further data
PTS3000 <- create.PTS(DEM = DEM500, extent = mesh_extent, spacing = 3000, 
type = "hexagonal",  
    boundary = "open")
 
# create another PTS-object, see below for use
PTS1000 <- create.PTS(DEM = DEM500, extent = mesh_extent, spacing = 1000, 
type = "hexagonal",  
    boundary = "open")
 
nodes_interiour <- PTS3000[PTS3000[, 4] == 0, ]  # all interiour nodes
nodes_boundary <- PTS3000[PTS3000[, 4] == 2, ]  # all boundary nodes
 
# visualise the result
plot(DEM500)  # plot DEM
points(nodes_interiour[, 1:2], pch = 4)  # plot interiour nodes
points(nodes_boundary[, 1:2], pch = 21, bg = "red")  # plot boundary nodes

 

To finish this chapter, the PTS-object needs to be saved to a real ASCII-file. This is done by the 
function write.PTS(), requiring an output filename and the name of the PST-object: 

write.PTS(filename = "PTS3000.pts", PTS = PTS3000)

3.2. Run CHILD and import the results 
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To run CHILD one needs at least two files: a compiled version of CHILD (assumed to be present in the 
current working directory if not specified different by the argument path) and an input-file (i.e. a text 
file containing all necessary model control parameters). Most problems arise from inappropriately 
created input-files. There are more than 230 parameters available. To aid creating a sound input-file, 
the package RCHILD offers some functions. The basic steps when starting with nothing are: i) create a 
new input-file object, ii) add all necessary parameters, iii) check the object for correctness and 
consistency, iv) write the actual *.in-file, v) run CHILD with this input-file. 

3.2.1. Create or read and manipulate the input-file 

If there is no input-file template present that may be modified to use it, one has to create a completely 
new file and specify the necessary parameters. To facilitaty this step, the function create.IN() can 
be used. It creates an empty S4-object IN. This object can then be filled with appropriate parameters: 

# create an empty input-file
test.in <- create.IN()
 
# show some general (but empty) parameters
test.in@OUTFILENAME
## [1] NA 
test.in@RUNTIME
## [1] NA 
test.in@UPTYPE
## [1] NA 
 
# set some parameters exemplary
test.in@OUTFILENAME <- "testoutput"
test.in@RUNTIME <- 1000
 
# show the updated parameters
test.in@OUTFILENAME
## [1] "testoutput" 
test.in@RUNTIME
## [1] 1000 

All empty slots of the IN-object are assigned NA by default. This means they will be deleted from the 
input-file during the writing process, performed with write.IN(). So, if the user manipulates an 
input-file, either in its text form or as an S4-object, empty parameters should be assigned NA, too. 

Since it is unlikely that a user has all necessary parameters and their interdependencies in mind and 
wants to create a new input-file each time a new model shall be run it is meaningful to use an already 
existing input-file (e.g. from a previous run) and modify it. 

Assuming there is an inputfile erzgebirge_open.in present in the working directory, this can be 
read to an S4-object IN with the function read.IN(). 

# read the input file and show some general parameter settings
erzgebirge_open.in <- read.IN("erzgebirge_open.in")
erzgebirge_open.in@OUTFILENAME  # show output file name
## [1] NA 
erzgebirge_open.in@RUNTIME  # show model run time
## [1] NA 
erzgebirge_open.in@POINTFILENAME  # show PTS file name
## [1] "PTS1000.pts" 

Usually it is desired to change or modify the input-file parameters and check the result. As shown 
several times before, this can be done easily. Doubling the model run time can be done like this: 

erzgebirge_open.in@RUNTIME <- erzgebirge_open.in@RUNTIME * 2

If the correctness of the input-file is no matter of debate, the (modified) S4-object can be converted 
(back) to an input-file in ASCII format (*.in) with the function write.IN(): 
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write.IN(erzgebirge_open.in, filename = "erzgebirge_open2.in")

However, usually a test of the input-file is useful. Therefore, a function check.IN() can be used. 
Currently, the function only checks if all mandatory model parameters are present in the S4-object. In 
the future it will also check for redundant or unused parameters or even if important parameter settings 
are within a meaningful value range. The function returns a list object with the potentially modified IN-
file and all found warnings and notifications. 

The function can operate in active and passive mode (passive mode is the default option). In active 
mode it automatically corrects wrongly specified or missing parameters to at least ensure that CHILD 
will run. However, this active mode should be used with care since parameters will be set to a default 
value, probably unsuitable to the specific modelling task. This mode is primarily there to be used in a 
loop where active adaption is necessary. It is therefore recommended to use the passive mode, i.e. 
warnings and notifications are recorded and returned. This way, the user can decide personally which 
parameters need adjustment. 

To simply test which parameters are mandatory to an input-file, in the following code an empty IN-
object is created and then checked: 

empty.in <- create.IN()  # create empty IN-object
empty.in.checked <- check.IN(empty.in)  # check the object
##       [,1]                                              
##  [1,] "Warning: parameter OUFILENAME missing."          
##  [2,] "Warning: parameter RUNTIME missing."             
##  [3,] "Warning: parameter OPINTRVL missing."            
##  [4,] "Warning: parameter OPTREADINPUT missing."        
##  [5,] "Warning: parameter OPTVAR missing."              
##  [6,] "Warning: parameter ST_PMEAN missing."            
##  [7,] "Warning: parameter ST_STDUR missing."            
##  [8,] "Warning: parameter ST_ISTDUR missing."           
##  [9,] "Warning: parameter FLOWGEN missing."             
## [10,] "Warning: parameter OPTMEANDER missing."          
## [11,] "Warning: parameter OPTMNDR missing."             
## [12,] "Warning: parameter OPTDETACHLIM missing."        
## [13,] "Warning: parameter OPTREADLAYER missing."        
## [14,] "Warning: parameter OPTLAYEROUTPUT missing."      
## [15,] "Warning: parameter OPTTSOUTPUT missing."         
## [16,] "Warning: parameter OPTINTERPLAYER missing."      
## [17,] "Warning: parameter OPTSTRATGRID missing."        
## [18,] "Warning: parameter OPTFLOODPLAIN missing."       
## [19,] "Warning: parameter OPTLOESSDEP missing."         
## [20,] "Warning: parameter OPTEXPOSURETIME missing."     
## [21,] "Warning: parameter OPTVEG missing."              
## [22,] "Warning: parameter OPTKINWAVE missing."          
## [23,] "Warning: parameter DETACHMENT_LAW missing."      
## [24,] "Warning: parameter MB missing."                  
## [25,] "Warning: parameter NB missing."                  
## [26,] "Warning: parameter PB missing."                  
## [27,] "Warning: parameter TAUCB missing."               
## [28,] "Warning: parameter TAUCR missing."               
## [29,] "Warning: parameter TRANSPORT_LAW missing."       
## [30,] "Warning: parameter KD missing."                  
## [31,] "Warning: parameter DIFFUSIONTHRESHOLD missing."  
## [32,] "Warning: parameter OPTDIFFDEP missing."          
## [33,] "Warning: parameter BEDROCKDEPTH missing."        
## [34,] "Warning: parameter REGINIT missing."             
## [35,] "Warning: parameter MAXREGDEPTH missing."         
## [36,] "Warning: parameter UPTYPE missing."              
## [37,] "Warning: parameter NUMGRNSIZE missing."          
## [38,] "Warning: parameter GRAINDIAM1 missing."          
## [39,] "Warning: parameter BRPROPORTION1 missing."       
## [40,] "Warning: parameter REGPROPORTION1 missing."      
## [41,] "Warning: parameter CHAN_GEOM_MODEL missing."     
## [42,] "Warning: parameter HYDR_WID_COEFF_DS missing."   
## [43,] "Warning: parameter HYDR_WID_EXP_DS missing."     
## [44,] "Warning: parameter HYDR_WID_EXP_STN missing."    
## [45,] "Warning: parameter HYDR_DEP_COEFF_DS missing."   
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## [46,] "Warning: parameter HYDR_DEP_EXP_DS missing."     
## [47,] "Warning: parameter HYDR_DEP_EXP_STN missing."    
## [48,] "Warning: parameter HYDR_ROUGH_COEFF_DS missing." 
## [49,] "Warning: parameter HYDR_ROUGH_EXP_DS missing."   
## [50,] "Warning: parameter HYDR_ROUGH_EXP_STN missing."  
## [51,] "Warning: parameter BANKFULLEVENT missing."       
## [52,] "no notifications, congratulations!" 

A check of the modified real input-file erzgebirge_open.in would yield the following results: 

IN.checked <- check.IN(erzgebirge_open.in)
## [1,] “no warnings, congratulations!"           
## [2,] "no notifications, congratulations!" 

There should be no warnings or notifications found. Hence, it should be possible to write the input-file 
as described above and to run CHILD. 

3.2.2. Run CHILD 

The function run.CHILD() requires the file name of an input-file (with extension) and, if not present 
in the current working directory, the path to a compiled version of CHILD. Usually, CHILD is run from 
the command line but R offers calling and tracing system commands in the console via the 
function system. Although this is no real implementation of CHILD into R it offers at least the chance 
to follow the CHILD run information on the screen. After the model is (hopefully) finished, the output 
files are read to an S4-object CHILD and the created output files are removed from the working 
directory, if this is not disabled by setting the parameter outfiles to TRUE. 

To model landscape evolution of the wider eastern Erzgebirge region for 8000 years, using a 
hexagonal PTS file with 1000 m node spacing (remember the section above), the following code 
should serve. BUT REMEMBER, a CHILD model run may take considerable time: 

# write PTS file
write.PTS(filename = "PTS1000.pts", PTS1000)
 
# update PTS file name in IN-object
erzgebirge_open.in@POINTFILENAME <- "PTS1000.pts"
 
# write updated input file
write.IN(erzgebirge_open.in, filename = "erzgebirge_open.in")
 
# check updated input file (again)
check2 <- check.IN(erzgebirge_open.in)
##       [,1]                                              
## [1,] “no warnings, congratulations!"           
## [2,] "no notifications, congratulations!" 
 
# run the model ERZ <- run.CHILD('erzgebirge_open.in')
load("ERZ.RData")

3.2.3. Read the model results to R 

When using the function run.CHILD(), the results will be automatically imported to an S4-
object CHILD and written to a specified variable. However, it is also possible to import output files of 
an external CHILD-run to a CHILD-object. Even the function run.CHILD() allows going this way. 
Usually, the output files of the model run will be deleted after import into the S4-object but setting the 
logical parameter outfiles from FALSE to TRUE allows keeping the individual files. Importing external 
CHILD-run output files is done by the function read.CHILD(). 

3.3. Graphical visualisation of the results 

The great advantage of CHILD is that it runs fast, a not so minor disadvantage is that the entire model 
output consists of numerical data, only. 
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3.3.1. Display the surface and additional elements 

The easiest and quickest way to generate a visual impression of a model run output is to plot a map-
like image of the colour-coded elevation data. Of course, the time step for which the plot will be 
created must be specified, but nothing more: just a “quick-and-dirty” visualisation can be created by: 

display.surface(ERZ, 1)

 

To add some illustrative features, one may think of adding a hillshade layer and/or a contours layer. 
Remembering the things explained about creating hillshades from raster objects (chapter 2.3.2) it is 
obvious that the data needs a projection to be specified. Vertical exaggeration increases the visual 
effect of the hillshade. Contour lines also add some more impression of the relief. Furthermore, by 
default the resolution of the image is adjusted to the mean node spacing of the mesh. Interpolation to 
a finer raster size is possible. So a little bit more finished map would be possible by running the 
following code: 

display.surface(dataset = ERZ, timestep = 1, resolution = 300, projection = 
"+proj=lcc +lat_1=48 +lat_2=33 +lon_0=-100 +ellps=WGS84",  
    hillshade = TRUE, exaggeration = 5, contours = TRUE)

 

Of course all the visualisations, created by display.surface() can also be created by explicit 
code. Usually, this includes creating a raster object of the modelled surface, most easily by the 
function TIN.raster(), which in turn requires a TIN first: 
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ERZ_01_TIN <- read.TIN(dataset = ERZ, timestep = 5)
ERZ_01_raster <- TIN.raster(TIN = ERZ_01_TIN, resolution = 300, method = 
"tps")

TIN.raster() supports different interpolation techniques for the irregular spaced TIN-data: “lin” 
(linear interpolation, the default method), “cub” (cubic spline interpolation) and “tps” (thin plate spline 
interpolation). 

The raster object can be plotted and - given it has a geographical projection - derivatives such as a 
hillshade can be created as well (see above): 

projection(ERZ_01_raster) <- "+proj=lcc +lat_1=48 +lat_2=33 +lon_0=-100 
+ellps=WGS84"
hillshade <- hillShade(terrain(ERZ_01_raster * 10, opt = "slope"), 
terrain(ERZ_01_raster *  
    10, opt = "aspect"), angle = 45, direction = 0)
plot(hillshade, col = grey(seq(0, 1, length.out = 250)), legend = FALSE)
plot(ERZ_01_raster, col = terrain.colors(250), alpha = 0.7, add = TRUE)

 

Beyond plotting the modelled relief as a map it would be useful to add streams to the visual output. 
The function display.surface() allows specifying start points for streams and displays the traced 
streams as blue lines on top of the map. There is also a function click.coordinates() which 
allows to simply click on a map and retrieve the coordinates rather than figuring the positions out by 
trial and error or using an external GIS. R-code may look like springs <- 
click.coordinates(5). These springs can be specified in the function display.surface(): 

springs <- cbind(c(420129.4, 408496.2, 402948, 402053.2, 413000.8), 
c(5623119, 5621150, 5620077, 5614528, 5613000))
display.surface(ERZ, 1, stream = TRUE, startpoints = springs)
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Instead of plotting streams as lines of fixed width, it is possible to scale line width according to 
contribution area. This in done by specifying two additional parameters: 
width_scale and width_max. The first one determines how line width should be scaled. 
From "none" (no scaling, default value) over linear (linear scaling), root(square root scaling) 
and power (power scaling) to log (logarithmic scaling), there are plenty of types to choose from. The 
second parameter determines the maximum possible line width (i.e. that part of the streams with the 
largest contribution area). As an example, the same five streams as defined above are displayed with 
root-scaled line widths up to 5 units by the following code: 

display.surface(ERZ, 1, stream = TRUE, startpoints = springs, width_max =              
                5, width_scale = "root")

 

Furthermore, it might be illustrative and necessary to display not only selected streams but the entire 
stream network of a modelled landscape. This can be done by setting the parameter network to TRUE. 
Additionally, a threshold contribution area (area_min) may be specified upon which a stream is 
defined. In the example landscape a meaningful threshold would be around 50 million square metres: 

display.surface(ERZ, 1, network = TRUE, area_min = 5 * 10^7, width_max = 5,  
                width_scale = "root")
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Behind the described display options regarding streams and stream networks there are two functions 
that allow tracing streams and stream networks individually, with additional numeric 
output: trace.stream() and trace.network(). 

Apart from plotting elevation it is also possible to plot differences in elevation between two time steps. 
The function display.surface() supports this by specifying two time steps instead of just one. 
Then, the difference (i.e. second value minus first value in the timestep vector) is plotted: 

display.surface(ERZ, timestep = c(2, 1))

 

A similar result would be possible by explicit calculation, as well: 

DEM1 <- TIN.raster(read.TIN(ERZ, 2))
DEM2 <- TIN.raster(read.TIN(ERZ, 1))
DEMdiff <- DEM2 - DEM1
plot(DEMdiff)
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The difference between elevations of two time steps is close to a mean erosion rate. However, the 
latter requires including tectonic uplift and dividing by the time period that separates the two data sets. 
Mean erosion rates can be displayed by setting the function parameter erosion to TRUE and by 
specifying a value for tectonic uplift (if there is uplift present) other than the value already present in 
the CHILD object (check ERZ@inputs). If only one time step is specified then its precursor is used by 
default, if two times steps (actual time step and preceding time step) are used, the function shows the 
mean erosion retain metres per year between these two time steps. Note that the hillshade and 
exaggeration parameters only affect the relief data and not the thematic layer (erosion or elevation 
difference). 

display.surface(ERZ, timestep = c(5, 1), erosion = TRUE, hillshade = TRUE, 
exaggeration = 10)

 

Although a map view is the most common type of surface visualisation, in some cases it may be better 
to have a perspective view. This can be done by setting the parameter type from "map" (the default 
value) to "wireframe". This visualisation type supports all the previously described features 
(streams, stream networks, height differences, erosion rates) and uses two additional parameters for 
adjusting the perspective view: the azimutal angle theta and the height angle, i.e. the colatitude phi. 
Both are by default set to 30 °. 

display.surface(ERZ, 1, network = TRUE, area_min = 5 * 10^7, width_max = 5,  
    width_scale = "root", type = "wireframe", theta = 60, phi = 40)
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A view close to a map view would be possible (although not meaningful) by setting theta to 0 
and phi to 90): 

display.surface(ERZ, 1, network = TRUE, area_min = 5 * 10^7, width_max = 5,  
    width_scale = "root", type = "wireframe", theta = 0, phi = 90)

 

Yet another type of visualisation is rendering the landscape model as real time 3D scene, using 
openGL (the technique also used in Google Earth). To do so, type must be set to "scene". 
However, up to now it is not yet possible to display streams and stream networks with this visualisation 
type: 

display.surface(ERZ, 1, network = TRUE, area_min = 5 * 10^7, width_max = 5,  
    width_scale = "root", type = "scene", exaggeration = 5)
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